If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2-90x+60=0
a = 4; b = -90; c = +60;
Δ = b2-4ac
Δ = -902-4·4·60
Δ = 7140
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{7140}=\sqrt{4*1785}=\sqrt{4}*\sqrt{1785}=2\sqrt{1785}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-90)-2\sqrt{1785}}{2*4}=\frac{90-2\sqrt{1785}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-90)+2\sqrt{1785}}{2*4}=\frac{90+2\sqrt{1785}}{8} $
| 2(x-40=12 | | 4x^2+14x+5=2x | | 3x+12=7x+12 | | 2x+20=-3x+7 | | 7x-2x=63 | | 6x-57=-177 | | 5x-9=2x-24 | | -4+2x=6x+8 | | -304=-94+14x | | 6=1/2x^2 | | 2(10-y)+8y=44 | | 42.2=34.6+4h(5) | | 6=5x^2 | | -6x-12=8x+15 | | 2(10-y)+8=44 | | X+(x+1/4x)=90 | | -26=79-5x | | 0=-16^2+55t+4 | | 10=x-1/3x=0 | | Y=0.99x | | |x+5|-3=13 | | 6(x+7)+6(8x-4)=-36 | | Y=1/2x^2-6 | | 5(x+4)=7(x-2)=17 | | -30=3(8+x)-7(x+6) | | 4x-8=10x+5 | | 12x+12=100 | | -59=32+7x | | -8(1+4x)-6(1+3x)=-64 | | -5(v+1)+2(v+5)=-10 | | 5x-1=7x+15 | | 4x-1=-3x+41 |